MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F24 vs. S32506 Stainless Steel

Both ASTM A182 grade F24 and S32506 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F24 and the bottom bar is S32506 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
270
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
21
Fatigue Strength, MPa 330
330
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
81
Shear Strength, MPa 420
440
Tensile Strength: Ultimate (UTS), MPa 670
710
Tensile Strength: Yield (Proof), MPa 460
500

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 460
1100
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.3
3.9
Embodied Energy, MJ/kg 33
54
Embodied Water, L/kg 61
180

Common Calculations

PREN (Pitting Resistance) 6.7
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
130
Resilience: Unit (Modulus of Resilience), kJ/m3 570
620
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 11
4.3
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0015 to 0.0070
0
Carbon (C), % 0.050 to 0.1
0 to 0.030
Chromium (Cr), % 2.2 to 2.6
24 to 26
Iron (Fe), % 94.5 to 96.1
60.8 to 67.4
Manganese (Mn), % 0.3 to 0.7
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
3.0 to 3.5
Nickel (Ni), % 0
5.5 to 7.2
Nitrogen (N), % 0 to 0.12
0.080 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0.15 to 0.45
0 to 0.9
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0.060 to 0.1
0
Tungsten (W), % 0
0.050 to 0.3
Vanadium (V), % 0.2 to 0.3
0