MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3VCb vs. S31060 Stainless Steel

Both ASTM A182 grade F3VCb and S31060 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3VCb and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
46
Fatigue Strength, MPa 320
290
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
78
Shear Strength, MPa 420
480
Tensile Strength: Ultimate (UTS), MPa 670
680
Tensile Strength: Yield (Proof), MPa 460
310

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 470
1080
Melting Completion (Liquidus), °C 1470
1420
Melting Onset (Solidus), °C 1430
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
18
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.4
3.4
Embodied Energy, MJ/kg 33
48
Embodied Water, L/kg 64
170

Common Calculations

PREN (Pitting Resistance) 6.3
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
260
Resilience: Unit (Modulus of Resilience), kJ/m3 570
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 19
15

Alloy Composition

Boron (B), % 0
0.0010 to 0.010
Calcium (Ca), % 0.00050 to 0.015
0
Carbon (C), % 0.1 to 0.15
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 2.7 to 3.3
22 to 24
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
10 to 12.5
Niobium (Nb), % 0.015 to 0.070
0
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.015
0
Vanadium (V), % 0.2 to 0.3
0