MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F5a vs. ASTM A182 Grade F911

Both ASTM A182 grade F5a and ASTM A182 grade F911 are iron alloys. Both are furnished in the normalized and tempered condition. They have a moderately high 94% of their average alloy composition in common.

For each property being compared, the top bar is ASTM A182 grade F5a and the bottom bar is ASTM A182 grade F911.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
20
Fatigue Strength, MPa 380
350
Poisson's Ratio 0.29
0.28
Reduction in Area, % 56
46
Shear Modulus, GPa 74
76
Shear Strength, MPa 450
430
Tensile Strength: Ultimate (UTS), MPa 710
690
Tensile Strength: Yield (Proof), MPa 520
500

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 510
600
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1420
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
10

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
9.5
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 24
40
Embodied Water, L/kg 69
90

Common Calculations

PREN (Pitting Resistance) 6.8
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
130
Resilience: Unit (Modulus of Resilience), kJ/m3 700
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 11
6.9
Thermal Shock Resistance, points 20
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.00030 to 0.0060
Carbon (C), % 0 to 0.25
0.090 to 0.13
Chromium (Cr), % 4.0 to 6.0
8.5 to 9.5
Iron (Fe), % 91.4 to 95.6
86.2 to 88.9
Manganese (Mn), % 0 to 0.6
0.3 to 0.6
Molybdenum (Mo), % 0.44 to 0.65
0.9 to 1.1
Nickel (Ni), % 0 to 0.5
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.040 to 0.090
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.5
0.1 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010