MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. Grade 12 Titanium

ASTM A182 grade F6b belongs to the iron alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
170
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
21
Fatigue Strength, MPa 440
280
Poisson's Ratio 0.28
0.32
Reduction in Area, % 51
28
Shear Modulus, GPa 76
39
Shear Strength, MPa 530
330
Tensile Strength: Ultimate (UTS), MPa 850
530
Tensile Strength: Yield (Proof), MPa 710
410

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 750
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 10
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.2
31
Embodied Energy, MJ/kg 30
500
Embodied Water, L/kg 100
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 30
32
Strength to Weight: Bending, points 26
32
Thermal Diffusivity, mm2/s 6.7
8.5
Thermal Shock Resistance, points 31
37

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 81.2 to 87.1
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.6
0.2 to 0.4
Nickel (Ni), % 1.0 to 2.0
0.6 to 0.9
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
97.6 to 99.2
Residuals, % 0
0 to 0.4