MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. S30815 Stainless Steel

Both ASTM A182 grade F911 and S30815 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
45
Fatigue Strength, MPa 350
320
Poisson's Ratio 0.28
0.28
Reduction in Area, % 46
56
Shear Modulus, GPa 76
77
Shear Strength, MPa 430
480
Tensile Strength: Ultimate (UTS), MPa 690
680
Tensile Strength: Yield (Proof), MPa 500
350

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Mechanical, °C 600
1020
Melting Completion (Liquidus), °C 1480
1400
Melting Onset (Solidus), °C 1440
1360
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 40
47
Embodied Water, L/kg 90
160

Common Calculations

PREN (Pitting Resistance) 15
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
260
Resilience: Unit (Modulus of Resilience), kJ/m3 650
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 6.9
4.0
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 8.5 to 9.5
20 to 22
Iron (Fe), % 86.2 to 88.9
62.8 to 68.4
Manganese (Mn), % 0.3 to 0.6
0 to 0.8
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
10 to 12
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.040 to 0.090
0.14 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0.1 to 0.5
1.4 to 2.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0