MakeItFrom.com
Menu (ESC)

ASTM A227 Spring Steel vs. 356.0 Aluminum

ASTM A227 spring steel belongs to the iron alloys classification, while 356.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A227 spring steel and the bottom bar is 356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 500 to 640
55 to 75
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 12
2.0 to 3.8
Fatigue Strength, MPa 900 to 1160
55 to 75
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Shear Strength, MPa 1030 to 1330
140 to 190
Tensile Strength: Ultimate (UTS), MPa 1720 to 2220
160 to 240
Tensile Strength: Yield (Proof), MPa 1430 to 1850
100 to 190

Thermal Properties

Latent Heat of Fusion, J/g 250
500
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1450
620
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 52
150 to 170
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
40 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
140 to 150

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.4
8.0
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 46
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 260
3.2 to 8.2
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 61 to 79
17 to 26
Strength to Weight: Bending, points 41 to 48
25 to 33
Thermal Diffusivity, mm2/s 14
64 to 71
Thermal Shock Resistance, points 55 to 71
7.6 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
90.1 to 93.3
Carbon (C), % 0.45 to 0.85
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 97.4 to 99.1
0 to 0.6
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0.3 to 1.3
0 to 0.35
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.15 to 0.35
6.5 to 7.5
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15

Comparable Variants