MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. AISI 416 Stainless Steel

Both ASTM A369 grade FP92 and AISI 416 stainless steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
230 to 320
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
13 to 31
Fatigue Strength, MPa 330
230 to 340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 440
340 to 480
Tensile Strength: Ultimate (UTS), MPa 710
510 to 800
Tensile Strength: Yield (Proof), MPa 490
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 590
680
Melting Completion (Liquidus), °C 1490
1530
Melting Onset (Solidus), °C 1450
1480
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
30
Thermal Expansion, µm/m-K 13
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 40
27
Embodied Water, L/kg 89
100

Common Calculations

PREN (Pitting Resistance) 14
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 620
220 to 940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
18 to 29
Strength to Weight: Bending, points 22
18 to 25
Thermal Diffusivity, mm2/s 6.9
8.1
Thermal Shock Resistance, points 19
19 to 30

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.15
Chromium (Cr), % 8.5 to 9.5
12 to 14
Iron (Fe), % 85.8 to 89.1
83.2 to 87.9
Manganese (Mn), % 0.3 to 0.6
0 to 1.3
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.060
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0.15 to 0.35
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0