MakeItFrom.com
Menu (ESC)

ASTM A369 Grade FP92 vs. EN 1.4034 Stainless Steel

Both ASTM A369 grade FP92 and EN 1.4034 stainless steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A369 grade FP92 and the bottom bar is EN 1.4034 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
11 to 14
Fatigue Strength, MPa 330
230 to 400
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 440
420 to 540
Tensile Strength: Ultimate (UTS), MPa 710
690 to 900
Tensile Strength: Yield (Proof), MPa 490
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 590
770
Melting Completion (Liquidus), °C 1490
1440
Melting Onset (Solidus), °C 1450
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 40
27
Embodied Water, L/kg 89
100

Common Calculations

PREN (Pitting Resistance) 14
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
81 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 620
400 to 1370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
25 to 32
Strength to Weight: Bending, points 22
22 to 27
Thermal Diffusivity, mm2/s 6.9
8.1
Thermal Shock Resistance, points 19
24 to 32

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0.43 to 0.5
Chromium (Cr), % 8.5 to 9.5
12.5 to 14.5
Iron (Fe), % 85.8 to 89.1
83 to 87.1
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0