MakeItFrom.com
Menu (ESC)

ASTM A372 Grade J Steel vs. Grade 35 Titanium

ASTM A372 grade J steel belongs to the iron alloys classification, while grade 35 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A372 grade J steel and the bottom bar is grade 35 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 22
5.6
Fatigue Strength, MPa 310 to 570
330
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Shear Strength, MPa 410 to 630
580
Tensile Strength: Ultimate (UTS), MPa 650 to 1020
1000
Tensile Strength: Yield (Proof), MPa 430 to 850
630

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 420
320
Melting Completion (Liquidus), °C 1460
1630
Melting Onset (Solidus), °C 1420
1580
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 44
7.4
Thermal Expansion, µm/m-K 13
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
37
Density, g/cm3 7.8
4.6
Embodied Carbon, kg CO2/kg material 1.5
33
Embodied Energy, MJ/kg 20
530
Embodied Water, L/kg 51
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
49
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 1930
1830
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 23 to 36
61
Strength to Weight: Bending, points 21 to 29
49
Thermal Diffusivity, mm2/s 12
3.0
Thermal Shock Resistance, points 19 to 30
70

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
4.0 to 5.0
Carbon (C), % 0.35 to 0.5
0 to 0.080
Chromium (Cr), % 0.8 to 1.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.7 to 97.8
0.2 to 0.8
Manganese (Mn), % 0.75 to 1.1
0
Molybdenum (Mo), % 0.15 to 0.25
1.5 to 2.5
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0.15 to 0.35
0.2 to 0.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
88.4 to 93
Vanadium (V), % 0
1.1 to 2.1
Residuals, % 0
0 to 0.4