MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. Grade 1 Titanium

ASTM A387 grade 9 steel belongs to the iron alloys classification, while grade 1 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is grade 1 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
120
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 21
28
Fatigue Strength, MPa 160 to 240
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
39
Shear Strength, MPa 310 to 380
200
Tensile Strength: Ultimate (UTS), MPa 500 to 600
310
Tensile Strength: Yield (Proof), MPa 230 to 350
220

Thermal Properties

Latent Heat of Fusion, J/g 270
420
Maximum Temperature: Mechanical, °C 600
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 26
20
Thermal Expansion, µm/m-K 13
8.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.1
31
Embodied Energy, MJ/kg 28
510
Embodied Water, L/kg 87
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
79
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 18 to 21
19
Strength to Weight: Bending, points 18 to 20
23
Thermal Diffusivity, mm2/s 6.9
8.2
Thermal Shock Resistance, points 14 to 17
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 8.0 to 10
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 87.1 to 90.8
0 to 0.2
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
99.095 to 100
Vanadium (V), % 0 to 0.040
0
Residuals, % 0
0 to 0.4