MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. AISI 416 Stainless Steel

Both ASTM A387 grade 91 class 2 and AISI 416 stainless steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
230 to 320
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
13 to 31
Fatigue Strength, MPa 330
230 to 340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 420
340 to 480
Tensile Strength: Ultimate (UTS), MPa 670
510 to 800
Tensile Strength: Yield (Proof), MPa 470
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 600
680
Melting Completion (Liquidus), °C 1460
1530
Melting Onset (Solidus), °C 1420
1480
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
30
Thermal Expansion, µm/m-K 13
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
1.9
Embodied Energy, MJ/kg 37
27
Embodied Water, L/kg 88
100

Common Calculations

PREN (Pitting Resistance) 13
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 580
220 to 940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
18 to 29
Strength to Weight: Bending, points 22
18 to 25
Thermal Diffusivity, mm2/s 6.9
8.1
Thermal Shock Resistance, points 19
19 to 30

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0 to 0.15
Chromium (Cr), % 8.0 to 9.5
12 to 14
Iron (Fe), % 87.3 to 90.3
83.2 to 87.9
Manganese (Mn), % 0.3 to 0.6
0 to 1.3
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.060
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0.15 to 0.35
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0