MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. EN 1.4024 Stainless Steel

Both ASTM A387 grade 91 class 2 and EN 1.4024 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is EN 1.4024 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
15 to 22
Fatigue Strength, MPa 330
220 to 300
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 420
370 to 460
Tensile Strength: Ultimate (UTS), MPa 670
590 to 750
Tensile Strength: Yield (Proof), MPa 470
330 to 510

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 600
760
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
1.9
Embodied Energy, MJ/kg 37
27
Embodied Water, L/kg 88
100

Common Calculations

PREN (Pitting Resistance) 13
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 580
280 to 660
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
21 to 27
Strength to Weight: Bending, points 22
20 to 24
Thermal Diffusivity, mm2/s 6.9
8.1
Thermal Shock Resistance, points 19
21 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0.12 to 0.17
Chromium (Cr), % 8.0 to 9.5
12 to 14
Iron (Fe), % 87.3 to 90.3
83.8 to 87.9
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0.2 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0