MakeItFrom.com
Menu (ESC)

ASTM A588 Steel vs. Nickel 30

ASTM A588 steel belongs to the iron alloys classification, while nickel 30 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A588 steel and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 22
34
Fatigue Strength, MPa 270
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
82
Shear Strength, MPa 350
440
Tensile Strength: Ultimate (UTS), MPa 550
660
Tensile Strength: Yield (Proof), MPa 390
270

Thermal Properties

Latent Heat of Fusion, J/g 250 to 260
320
Maximum Temperature: Mechanical, °C 410
1020
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1410 to 1420
1430
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 43 to 44
10
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3 to 2.5
60
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.5 to 1.6
9.4
Embodied Energy, MJ/kg 20 to 22
130
Embodied Water, L/kg 50 to 51
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
180
Resilience: Unit (Modulus of Resilience), kJ/m3 400
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 12
2.7
Thermal Shock Resistance, points 16
18