MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. AWS E90C-B9

ASTM B817 type I belongs to the titanium alloys classification, while AWS E90C-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.0 to 13
18
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 770 to 960
710
Tensile Strength: Yield (Proof), MPa 700 to 860
460

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Melting Completion (Liquidus), °C 1600
1460
Melting Onset (Solidus), °C 1550
1410
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
25
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
7.0
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
2.6
Embodied Energy, MJ/kg 610
37
Embodied Water, L/kg 200
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 48 to 60
25
Strength to Weight: Bending, points 42 to 49
23
Thermal Diffusivity, mm2/s 2.9
6.9
Thermal Shock Resistance, points 54 to 68
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0 to 0.040
Carbon (C), % 0 to 0.1
0.080 to 0.13
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
84.4 to 90.9
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0 to 0.040
0.030 to 0.070
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.5
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0.15 to 0.3
Residuals, % 0 to 0.4
0 to 0.5