MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. EN 1.4594 Stainless Steel

ASTM B817 type I belongs to the titanium alloys classification, while EN 1.4594 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is EN 1.4594 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 4.0 to 13
11 to 17
Fatigue Strength, MPa 360 to 520
490 to 620
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 770 to 960
1020 to 1170
Tensile Strength: Yield (Proof), MPa 700 to 860
810 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
820
Melting Completion (Liquidus), °C 1600
1450
Melting Onset (Solidus), °C 1550
1410
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
16
Thermal Expansion, µm/m-K 9.6
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
15
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
3.2
Embodied Energy, MJ/kg 610
45
Embodied Water, L/kg 200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
1660 to 3320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 48 to 60
36 to 41
Strength to Weight: Bending, points 42 to 49
29 to 31
Thermal Diffusivity, mm2/s 2.9
4.4
Thermal Shock Resistance, points 54 to 68
34 to 39

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.070
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 0
1.2 to 2.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
72.6 to 79.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.2 to 2.0
Nickel (Ni), % 0
5.0 to 6.0
Niobium (Nb), % 0
0.15 to 0.6
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.7
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0