MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. 5059 Aluminum

ASTM grade HC steel belongs to the iron alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 6.0
11 to 25
Fatigue Strength, MPa 96
170 to 240
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 430
350 to 410
Tensile Strength: Yield (Proof), MPa 200
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Corrosion, °C 460
65
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1410
650
Melting Onset (Solidus), °C 1370
510
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 17
110
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
95

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 2.8
9.1
Embodied Energy, MJ/kg 40
160
Embodied Water, L/kg 170
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 95
220 to 650
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
50
Strength to Weight: Axial, points 16
36 to 42
Strength to Weight: Bending, points 16
41 to 45
Thermal Diffusivity, mm2/s 4.5
44
Thermal Shock Resistance, points 14
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
89.9 to 94
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0 to 0.25
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 61.9 to 74
0 to 0.5
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0 to 1.0
0.6 to 1.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.45
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15