MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. C14200 Copper

ASTM grade HC steel belongs to the iron alloys classification, while C14200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is C14200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 6.0
8.0 to 45
Fatigue Strength, MPa 96
76 to 130
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
43
Tensile Strength: Ultimate (UTS), MPa 430
220 to 370
Tensile Strength: Yield (Proof), MPa 200
75 to 340

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1410
1080
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 17
190
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
45

Otherwise Unclassified Properties

Base Metal Price, % relative 14
31
Density, g/cm3 7.6
8.9
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
41
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
29 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 95
24 to 500
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 16
6.8 to 11
Strength to Weight: Bending, points 16
9.1 to 13
Thermal Diffusivity, mm2/s 4.5
56
Thermal Shock Resistance, points 14
7.9 to 13

Alloy Composition

Arsenic (As), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
99.4 to 99.835
Iron (Fe), % 61.9 to 74
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0
Phosphorus (P), % 0 to 0.040
0.015 to 0.040
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0