MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. C82400 Copper

ASTM grade HC steel belongs to the iron alloys classification, while C82400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 6.0
1.0 to 20
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
45
Tensile Strength: Ultimate (UTS), MPa 430
500 to 1030
Tensile Strength: Yield (Proof), MPa 200
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 1100
270
Melting Completion (Liquidus), °C 1410
1000
Melting Onset (Solidus), °C 1370
900
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
26

Otherwise Unclassified Properties

Density, g/cm3 7.6
8.8
Embodied Carbon, kg CO2/kg material 2.8
8.9
Embodied Energy, MJ/kg 40
140
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 95
270 to 3870
Stiffness to Weight: Axial, points 15
7.6
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 16
16 to 33
Strength to Weight: Bending, points 16
16 to 26
Thermal Diffusivity, mm2/s 4.5
39
Thermal Shock Resistance, points 14
17 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 0
96 to 98.2
Iron (Fe), % 61.9 to 74
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5