MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. C86300 Bronze

ASTM grade HC steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.0
14
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 430
850
Tensile Strength: Yield (Proof), MPa 200
480

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1410
920
Melting Onset (Solidus), °C 1370
890
Specific Heat Capacity, J/kg-K 490
420
Thermal Conductivity, W/m-K 17
35
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 14
23
Density, g/cm3 7.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 40
51
Embodied Water, L/kg 170
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
100
Resilience: Unit (Modulus of Resilience), kJ/m3 95
1030
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 16
30
Strength to Weight: Bending, points 16
25
Thermal Diffusivity, mm2/s 4.5
11
Thermal Shock Resistance, points 14
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 61.9 to 74
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0