MakeItFrom.com
Menu (ESC)

ASTM Grade HC Steel vs. C95410 Bronze

ASTM grade HC steel belongs to the iron alloys classification, while C95410 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HC steel and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 6.0
9.1 to 13
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
43
Tensile Strength: Ultimate (UTS), MPa 430
620 to 740
Tensile Strength: Yield (Proof), MPa 200
260 to 380

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 1100
230
Melting Completion (Liquidus), °C 1410
1040
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 490
440
Thermal Conductivity, W/m-K 17
59
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
14

Otherwise Unclassified Properties

Base Metal Price, % relative 14
28
Density, g/cm3 7.6
8.2
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 40
54
Embodied Water, L/kg 170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
57 to 64
Resilience: Unit (Modulus of Resilience), kJ/m3 95
280 to 630
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 16
21 to 25
Strength to Weight: Bending, points 16
20 to 22
Thermal Diffusivity, mm2/s 4.5
16
Thermal Shock Resistance, points 14
22 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
83 to 85.5
Iron (Fe), % 61.9 to 74
3.0 to 5.0
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
1.5 to 2.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5