MakeItFrom.com
Menu (ESC)

ASTM Grade HE Steel vs. Grade 37 Titanium

ASTM grade HE steel belongs to the iron alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HE steel and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 10
22
Fatigue Strength, MPa 160
170
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 670
390
Tensile Strength: Yield (Proof), MPa 310
250

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 1100
310
Melting Completion (Liquidus), °C 1400
1650
Melting Onset (Solidus), °C 1360
1600
Specific Heat Capacity, J/kg-K 490
550
Thermal Conductivity, W/m-K 14
21
Thermal Expansion, µm/m-K 17
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.8

Otherwise Unclassified Properties

Base Metal Price, % relative 19
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 3.5
31
Embodied Energy, MJ/kg 50
500
Embodied Water, L/kg 190
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
76
Resilience: Unit (Modulus of Resilience), kJ/m3 240
280
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 3.6
8.4
Thermal Shock Resistance, points 14
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
1.0 to 2.0
Carbon (C), % 0.2 to 0.5
0 to 0.080
Chromium (Cr), % 26 to 30
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 53.9 to 65.8
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 11
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
96.9 to 99
Residuals, % 0
0 to 0.4