MakeItFrom.com
Menu (ESC)

ASTM Grade HE Steel vs. C81500 Copper

ASTM grade HE steel belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HE steel and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
110
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 10
17
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
44
Tensile Strength: Ultimate (UTS), MPa 670
350
Tensile Strength: Yield (Proof), MPa 310
280

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1400
1090
Melting Onset (Solidus), °C 1360
1080
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 14
320
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
82
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
83

Otherwise Unclassified Properties

Base Metal Price, % relative 19
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 50
41
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
56
Resilience: Unit (Modulus of Resilience), kJ/m3 240
330
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
11
Strength to Weight: Bending, points 22
12
Thermal Diffusivity, mm2/s 3.6
91
Thermal Shock Resistance, points 14
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 26 to 30
0.4 to 1.5
Copper (Cu), % 0
97.4 to 99.6
Iron (Fe), % 53.9 to 65.8
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 11
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.15
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5