MakeItFrom.com
Menu (ESC)

ASTM Grade HG10 MNN Steel vs. EN AC-43400 Aluminum

ASTM grade HG10 MNN steel belongs to the iron alloys classification, while EN AC-43400 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HG10 MNN steel and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
80
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 23
1.1
Fatigue Strength, MPa 170
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 590
270
Tensile Strength: Yield (Proof), MPa 250
160

Thermal Properties

Latent Heat of Fusion, J/g 290
540
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1420
600
Melting Onset (Solidus), °C 1370
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 21
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 4.0
7.8
Embodied Energy, MJ/kg 58
150
Embodied Water, L/kg 160
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 21
29
Strength to Weight: Bending, points 20
36
Thermal Diffusivity, mm2/s 3.9
59
Thermal Shock Resistance, points 13
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
86 to 90.8
Carbon (C), % 0.070 to 0.11
0
Chromium (Cr), % 18.5 to 20.5
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 57.9 to 66.5
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 3.0 to 5.0
0 to 0.55
Molybdenum (Mo), % 0.25 to 0.45
0
Nickel (Ni), % 11.5 to 13.5
0 to 0.15
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
9.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15