MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. 6013 Aluminum

ASTM grade HL steel belongs to the iron alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 11
3.4 to 22
Fatigue Strength, MPa 150
98 to 140
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 500
310 to 410
Tensile Strength: Yield (Proof), MPa 270
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1340
580
Specific Heat Capacity, J/kg-K 490
900
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 4.5
8.3
Embodied Energy, MJ/kg 65
150
Embodied Water, L/kg 210
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 180
200 to 900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 18
31 to 41
Strength to Weight: Bending, points 18
37 to 44
Thermal Shock Resistance, points 11
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.8 to 97.8
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0 to 0.1
Copper (Cu), % 0
0.6 to 1.1
Iron (Fe), % 40.8 to 53.8
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 2.0
0.2 to 0.8
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0.6 to 1.0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15