MakeItFrom.com
Menu (ESC)

ASTM Grade LC2-1 Steel vs. EN 1.5662 Steel

Both ASTM grade LC2-1 steel and EN 1.5662 steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC2-1 steel and the bottom bar is EN 1.5662 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
20
Fatigue Strength, MPa 430
380 to 450
Poisson's Ratio 0.29
0.29
Reduction in Area, % 34
56 to 57
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 810
740 to 750
Tensile Strength: Yield (Proof), MPa 630
550 to 660

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 450
430
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
7.5
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.9
2.3
Embodied Energy, MJ/kg 25
31
Embodied Water, L/kg 60
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1040
810 to 1150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
26
Strength to Weight: Bending, points 25
23
Thermal Shock Resistance, points 24
22

Alloy Composition

Carbon (C), % 0 to 0.22
0 to 0.1
Chromium (Cr), % 1.4 to 1.9
0
Iron (Fe), % 92.5 to 95.3
88.6 to 91.2
Manganese (Mn), % 0.55 to 0.75
0.3 to 0.8
Molybdenum (Mo), % 0.3 to 0.6
0 to 0.1
Nickel (Ni), % 2.5 to 3.5
8.5 to 10
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.045
0 to 0.0050
Vanadium (V), % 0
0 to 0.050