MakeItFrom.com
Menu (ESC)

ASTM Grade LC9 Steel vs. EN 1.4021 Stainless Steel

Both ASTM grade LC9 steel and EN 1.4021 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC9 steel and the bottom bar is EN 1.4021 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
11 to 17
Fatigue Strength, MPa 420
240 to 380
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 660
630 to 880
Tensile Strength: Yield (Proof), MPa 590
390 to 670

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 430
760
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
7.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.3
1.9
Embodied Energy, MJ/kg 31
27
Embodied Water, L/kg 65
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 920
400 to 1160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
23 to 31
Strength to Weight: Bending, points 21
21 to 26
Thermal Shock Resistance, points 20
22 to 31

Alloy Composition

Carbon (C), % 0 to 0.13
0.16 to 0.25
Chromium (Cr), % 0 to 0.5
12 to 14
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 87.4 to 91.5
83.2 to 87.8
Manganese (Mn), % 0 to 0.9
0 to 1.5
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 8.5 to 10
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.45
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.015
Vanadium (V), % 0 to 0.030
0