MakeItFrom.com
Menu (ESC)

ASTM Grade LCB Steel vs. EN 1.1132 Steel

Both ASTM grade LCB steel and EN 1.1132 steel are iron alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCB steel and the bottom bar is EN 1.1132 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
12 to 24
Fatigue Strength, MPa 200
180 to 280
Poisson's Ratio 0.29
0.29
Reduction in Area, % 40
63 to 73
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 540
370 to 490
Tensile Strength: Yield (Proof), MPa 270
240 to 400

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
18
Embodied Water, L/kg 45
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
38 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
160 to 430
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
13 to 17
Strength to Weight: Bending, points 19
15 to 18
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 17
12 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.3
0.13 to 0.17
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 97 to 100
98.6 to 99.57
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.3
Sulfur (S), % 0 to 0.045
0 to 0.025
Residuals, % 0 to 1.0
0