MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. ASTM A182 Grade F36

Both ASTM grade LCC steel and ASTM A182 grade F36 are iron alloys. Both are furnished in the normalized and tempered condition. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
17
Fatigue Strength, MPa 230
330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 570
710
Tensile Strength: Yield (Proof), MPa 310
490

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
3.4
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 18
22
Embodied Water, L/kg 45
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 13
10
Thermal Shock Resistance, points 17
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.25
0.1 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0.5 to 0.8
Iron (Fe), % 96.9 to 100
95 to 97.1
Manganese (Mn), % 0 to 1.2
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.6
0.25 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.025
Vanadium (V), % 0
0 to 0.020
Residuals, % 0 to 1.0
0