MakeItFrom.com
Menu (ESC)

AWS BVAg-18 vs. CC498K Bronze

AWS BVAg-18 belongs to the otherwise unclassified metals classification, while CC498K bronze belongs to the copper alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 17 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS BVAg-18 and the bottom bar is CC498K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 82
110
Poisson's Ratio 0.36
0.34
Shear Modulus, GPa 30
41
Tensile Strength: Ultimate (UTS), MPa 180
260

Thermal Properties

Latent Heat of Fusion, J/g 140
190
Melting Completion (Liquidus), °C 720
1000
Melting Onset (Solidus), °C 600
920
Specific Heat Capacity, J/kg-K 280
370
Thermal Expansion, µm/m-K 19
18

Otherwise Unclassified Properties

Density, g/cm3 9.7
8.8
Embodied Carbon, kg CO2/kg material 59
3.2
Embodied Energy, MJ/kg 930
52

Common Calculations

Stiffness to Weight: Axial, points 4.7
6.9
Stiffness to Weight: Bending, points 15
18
Strength to Weight: Axial, points 5.1
8.1
Strength to Weight: Bending, points 7.3
10
Thermal Shock Resistance, points 8.1
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Cadmium (Cd), % 0 to 0.0010
0
Carbon (C), % 0 to 0.0050
0
Copper (Cu), % 28.5 to 31.5
85 to 90
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0 to 0.0020
1.0 to 2.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.0020
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Silver (Ag), % 59 to 61
0
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 9.5 to 10.5
5.5 to 6.5
Zinc (Zn), % 0 to 0.0010
3.0 to 5.0