MakeItFrom.com
Menu (ESC)

AWS E110C-K4 vs. CC333G Bronze

AWS E110C-K4 belongs to the iron alloys classification, while CC333G bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E110C-K4 and the bottom bar is CC333G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
45
Tensile Strength: Ultimate (UTS), MPa 850
710
Tensile Strength: Yield (Proof), MPa 780
310

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1020
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 41
38
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.7
3.5
Embodied Energy, MJ/kg 23
56
Embodied Water, L/kg 54
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
75
Resilience: Unit (Modulus of Resilience), kJ/m3 1600
410
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 30
24
Strength to Weight: Bending, points 25
21
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 25
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
8.5 to 10.5
Bismuth (Bi), % 0
0 to 0.010
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0.15 to 0.65
0 to 0.050
Copper (Cu), % 0 to 0.35
76 to 83
Iron (Fe), % 92.1 to 98.4
3.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.75 to 2.3
0 to 3.0
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
3.7 to 6.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0