MakeItFrom.com
Menu (ESC)

AWS E110C-K4 vs. C43000 Brass

AWS E110C-K4 belongs to the iron alloys classification, while C43000 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E110C-K4 and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
3.0 to 55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 850
320 to 710
Tensile Strength: Yield (Proof), MPa 780
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1410
1000
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 41
120
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
28

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
29
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.7
2.8
Embodied Energy, MJ/kg 23
46
Embodied Water, L/kg 54
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1600
82 to 1350
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 30
10 to 23
Strength to Weight: Bending, points 25
12 to 20
Thermal Diffusivity, mm2/s 11
36
Thermal Shock Resistance, points 25
11 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0.15 to 0.65
0
Copper (Cu), % 0 to 0.35
84 to 87
Iron (Fe), % 92.1 to 98.4
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.75 to 2.3
0
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
1.7 to 2.7
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0 to 0.5
0 to 0.5