MakeItFrom.com
Menu (ESC)

AWS E320 vs. EN 1.4107 Stainless Steel

Both AWS E320 and EN 1.4107 stainless steel are iron alloys. They have 52% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
18 to 21
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 620
620 to 700

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 14
10

Otherwise Unclassified Properties

Base Metal Price, % relative 38
7.5
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.5
2.1
Embodied Energy, MJ/kg 91
30
Embodied Water, L/kg 220
100

Common Calculations

PREN (Pitting Resistance) 28
13
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
22 to 25
Strength to Weight: Bending, points 20
21 to 22
Thermal Shock Resistance, points 16
22 to 25

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.1
Chromium (Cr), % 19 to 21
11.5 to 12.5
Copper (Cu), % 3.0 to 4.0
0 to 0.3
Iron (Fe), % 31.8 to 43.5
83.8 to 87.2
Manganese (Mn), % 0.5 to 2.5
0.5 to 0.8
Molybdenum (Mo), % 2.0 to 3.0
0 to 0.5
Nickel (Ni), % 32 to 36
0.8 to 1.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.020
Vanadium (V), % 0
0 to 0.080