MakeItFrom.com
Menu (ESC)

AWS E320 vs. CC494K Bronze

AWS E320 belongs to the iron alloys classification, while CC494K bronze belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is CC494K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
7.6
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 620
210

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Melting Completion (Liquidus), °C 1410
970
Melting Onset (Solidus), °C 1360
890
Specific Heat Capacity, J/kg-K 460
360
Thermal Expansion, µm/m-K 14
19

Otherwise Unclassified Properties

Base Metal Price, % relative 38
31
Density, g/cm3 8.2
9.1
Embodied Carbon, kg CO2/kg material 6.5
3.1
Embodied Energy, MJ/kg 91
50
Embodied Water, L/kg 220
360

Common Calculations

Stiffness to Weight: Axial, points 13
6.4
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 21
6.5
Strength to Weight: Bending, points 20
8.8
Thermal Shock Resistance, points 16
7.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
78 to 87
Iron (Fe), % 31.8 to 43.5
0 to 0.25
Lead (Pb), % 0
8.0 to 10
Manganese (Mn), % 0.5 to 2.5
0 to 0.2
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0 to 2.0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.1
Silicon (Si), % 0 to 0.6
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
0 to 2.0