MakeItFrom.com
Menu (ESC)

AWS E320 vs. C61000 Bronze

AWS E320 belongs to the iron alloys classification, while C61000 bronze belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
29 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 620
390 to 460

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Melting Completion (Liquidus), °C 1410
1040
Melting Onset (Solidus), °C 1360
990
Specific Heat Capacity, J/kg-K 460
420
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 38
29
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 6.5
3.0
Embodied Energy, MJ/kg 91
49
Embodied Water, L/kg 220
370

Common Calculations

Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21
13 to 15
Strength to Weight: Bending, points 20
14 to 16
Thermal Shock Resistance, points 16
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
6.0 to 8.5
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
90.2 to 94
Iron (Fe), % 31.8 to 43.5
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.5 to 2.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5