MakeItFrom.com
Menu (ESC)

AWS E320 vs. C68400 Brass

AWS E320 belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
18
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 620
540

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Melting Completion (Liquidus), °C 1410
840
Melting Onset (Solidus), °C 1360
820
Specific Heat Capacity, J/kg-K 460
400
Thermal Expansion, µm/m-K 14
20

Otherwise Unclassified Properties

Base Metal Price, % relative 38
23
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 6.5
2.7
Embodied Energy, MJ/kg 91
47
Embodied Water, L/kg 220
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
19
Thermal Shock Resistance, points 16
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
59 to 64
Iron (Fe), % 31.8 to 43.5
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.5 to 2.5
0.2 to 1.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0 to 0.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0.030 to 0.3
Silicon (Si), % 0 to 0.6
1.5 to 2.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5