MakeItFrom.com
Menu (ESC)

AWS E320 vs. C82400 Copper

AWS E320 belongs to the iron alloys classification, while C82400 copper belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 620
500 to 1030

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Melting Completion (Liquidus), °C 1410
1000
Melting Onset (Solidus), °C 1360
900
Specific Heat Capacity, J/kg-K 460
380
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 6.5
8.9
Embodied Energy, MJ/kg 91
140
Embodied Water, L/kg 220
310

Common Calculations

Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21
16 to 33
Strength to Weight: Bending, points 20
16 to 26
Thermal Shock Resistance, points 16
17 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 3.0 to 4.0
96 to 98.2
Iron (Fe), % 31.8 to 43.5
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.5 to 2.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0 to 0.2
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5