MakeItFrom.com
Menu (ESC)

AWS E320 vs. C96800 Copper

AWS E320 belongs to the iron alloys classification, while C96800 copper belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
3.4
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
46
Tensile Strength: Ultimate (UTS), MPa 620
1010

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Melting Completion (Liquidus), °C 1410
1120
Melting Onset (Solidus), °C 1360
1060
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 38
34
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 6.5
3.4
Embodied Energy, MJ/kg 91
52
Embodied Water, L/kg 220
300

Common Calculations

Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21
32
Strength to Weight: Bending, points 20
25
Thermal Shock Resistance, points 16
35

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
87.1 to 90.5
Iron (Fe), % 31.8 to 43.5
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0.5 to 2.5
0.050 to 0.3
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
9.5 to 10.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.0050
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0 to 0.0025
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5