MakeItFrom.com
Menu (ESC)

AWS E383 vs. AWS E80C-Ni3

Both AWS E383 and AWS E80C-Ni3 are iron alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E383 and the bottom bar is AWS E80C-Ni3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 34
27
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
72
Tensile Strength: Ultimate (UTS), MPa 580
630

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
51
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 37
3.9
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.4
1.7
Embodied Energy, MJ/kg 89
23
Embodied Water, L/kg 240
53

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 3.1
14
Thermal Shock Resistance, points 15
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 26.5 to 29
0
Copper (Cu), % 0.6 to 1.5
0 to 0.35
Iron (Fe), % 28.8 to 39.2
92.8 to 97.3
Manganese (Mn), % 0.5 to 2.5
0 to 1.5
Molybdenum (Mo), % 3.2 to 4.2
0
Nickel (Ni), % 30 to 33
2.8 to 3.8
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.9
0 to 0.9
Sulfur (S), % 0 to 0.020
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5