MakeItFrom.com
Menu (ESC)

AWS E409Nb vs. ACI-ASTM CE3MN Steel

Both AWS E409Nb and ACI-ASTM CE3MN steel are iron alloys. They have 76% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E409Nb and the bottom bar is ACI-ASTM CE3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23
20
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
81
Tensile Strength: Ultimate (UTS), MPa 500
770
Tensile Strength: Yield (Proof), MPa 380
590

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
21
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
4.2
Embodied Energy, MJ/kg 42
58
Embodied Water, L/kg 100
180

Common Calculations

PREN (Pitting Resistance) 14
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 380
840
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
27
Strength to Weight: Bending, points 18
24
Thermal Diffusivity, mm2/s 6.8
4.1
Thermal Shock Resistance, points 14
21

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 11 to 14
24 to 26
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 80.2 to 88.5
58.1 to 65.9
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0 to 0.75
4.0 to 5.0
Nickel (Ni), % 0 to 0.6
6.0 to 8.0
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.040