MakeItFrom.com
Menu (ESC)

AWS E409Nb vs. EN 1.6553 Steel

Both AWS E409Nb and EN 1.6553 steel are iron alloys. They have 87% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E409Nb and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
19 to 21
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 500
710 to 800
Tensile Strength: Yield (Proof), MPa 380
470 to 670

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
39
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.6
Embodied Energy, MJ/kg 42
21
Embodied Water, L/kg 100
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 380
600 to 1190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
25 to 28
Strength to Weight: Bending, points 18
23 to 24
Thermal Diffusivity, mm2/s 6.8
10
Thermal Shock Resistance, points 14
21 to 23

Alloy Composition

Carbon (C), % 0 to 0.12
0.23 to 0.28
Chromium (Cr), % 11 to 14
0.4 to 0.8
Copper (Cu), % 0 to 0.75
0 to 0.3
Iron (Fe), % 80.2 to 88.5
95.6 to 98.2
Manganese (Mn), % 0 to 1.0
0.6 to 1.0
Molybdenum (Mo), % 0 to 0.75
0.15 to 0.3
Nickel (Ni), % 0 to 0.6
0.4 to 0.8
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.025
Vanadium (V), % 0
0 to 0.030