MakeItFrom.com
Menu (ESC)

AWS E409Nb vs. C81500 Copper

AWS E409Nb belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E409Nb and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 23
17
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 500
350
Tensile Strength: Yield (Proof), MPa 380
280

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1410
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
320
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
82
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
83

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
56
Resilience: Unit (Modulus of Resilience), kJ/m3 380
330
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
11
Strength to Weight: Bending, points 18
12
Thermal Diffusivity, mm2/s 6.8
91
Thermal Shock Resistance, points 14
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 14
0.4 to 1.5
Copper (Cu), % 0 to 0.75
97.4 to 99.6
Iron (Fe), % 80.2 to 88.5
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.6
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5