MakeItFrom.com
Menu (ESC)

AWS E410 vs. EN AC-46500 Aluminum

AWS E410 belongs to the iron alloys classification, while EN AC-46500 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E410 and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
74
Elongation at Break, % 23
1.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Tensile Strength: Ultimate (UTS), MPa 580
270
Tensile Strength: Yield (Proof), MPa 440
160

Thermal Properties

Latent Heat of Fusion, J/g 270
520
Melting Completion (Liquidus), °C 1450
610
Melting Onset (Solidus), °C 1400
520
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 28
100
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
81

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.0
7.6
Embodied Energy, MJ/kg 28
140
Embodied Water, L/kg 100
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 500
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 20
32
Thermal Diffusivity, mm2/s 7.5
41
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 0
77.9 to 90
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 13.5
0 to 0.15
Copper (Cu), % 0 to 0.75
2.0 to 4.0
Iron (Fe), % 82.2 to 89
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0 to 1.0
0 to 0.55
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.7
0 to 0.55
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
8.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.25