MakeItFrom.com
Menu (ESC)

AWS E90C-B9 vs. Titanium 15-3-3-3

AWS E90C-B9 belongs to the iron alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B9 and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18
5.7 to 8.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
39
Tensile Strength: Ultimate (UTS), MPa 710
1120 to 1390
Tensile Strength: Yield (Proof), MPa 460
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Melting Completion (Liquidus), °C 1460
1620
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 470
520
Thermal Conductivity, W/m-K 25
8.1
Thermal Expansion, µm/m-K 13
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
40
Density, g/cm3 7.8
4.8
Embodied Carbon, kg CO2/kg material 2.6
59
Embodied Energy, MJ/kg 37
950
Embodied Water, L/kg 91
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
78 to 89
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 25
64 to 80
Strength to Weight: Bending, points 23
50 to 57
Thermal Diffusivity, mm2/s 6.9
3.2
Thermal Shock Resistance, points 20
79 to 98

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.040
2.5 to 3.5
Carbon (C), % 0.080 to 0.13
0 to 0.050
Chromium (Cr), % 8.0 to 10.5
2.5 to 3.5
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 84.4 to 90.9
0 to 0.25
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
2.5 to 3.5
Titanium (Ti), % 0
72.6 to 78.5
Vanadium (V), % 0.15 to 0.3
14 to 16
Residuals, % 0 to 0.5
0 to 0.4