MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. AISI 434 Stainless Steel

Both AWS ER90S-B9 and AISI 434 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is AISI 434 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
24
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
78
Tensile Strength: Ultimate (UTS), MPa 690
520
Tensile Strength: Yield (Proof), MPa 470
320

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Melting Completion (Liquidus), °C 1450
1510
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 25
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.4
Embodied Energy, MJ/kg 37
33
Embodied Water, L/kg 91
120

Common Calculations

PREN (Pitting Resistance) 13
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 570
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 6.9
6.7
Thermal Shock Resistance, points 19
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.070 to 0.13
0 to 0.12
Chromium (Cr), % 8.0 to 10.5
16 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 84.4 to 90.7
78.6 to 83.3
Manganese (Mn), % 0 to 1.2
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.2
0.75 to 1.3
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.15 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Vanadium (V), % 0.15 to 0.3
0
Residuals, % 0 to 0.5
0