MakeItFrom.com
Menu (ESC)

AWS ERNiCrMo-2 vs. ASTM A182 Grade F23

AWS ERNiCrMo-2 belongs to the nickel alloys classification, while ASTM A182 grade F23 belongs to the iron alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS ERNiCrMo-2 and the bottom bar is ASTM A182 grade F23.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
74
Tensile Strength: Ultimate (UTS), MPa 750
570

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Melting Completion (Liquidus), °C 1460
1500
Melting Onset (Solidus), °C 1410
1450
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 11
41
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 55
7.0
Density, g/cm3 8.4
8.0
Embodied Carbon, kg CO2/kg material 9.2
2.5
Embodied Energy, MJ/kg 120
36
Embodied Water, L/kg 270
59

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 20
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.050 to 0.15
0.040 to 0.1
Chromium (Cr), % 20.5 to 23
1.9 to 2.6
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 17 to 20
93.2 to 96.2
Manganese (Mn), % 0 to 1.0
0.1 to 0.6
Molybdenum (Mo), % 8.0 to 10
0.050 to 0.3
Nickel (Ni), % 40.3 to 53.8
0 to 0.4
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0.2 to 1.0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3
Residuals, % 0 to 0.5
0