MakeItFrom.com
Menu (ESC)

AWS ERTi-1 vs. C84400 Valve Metal

AWS ERTi-1 belongs to the titanium alloys classification, while C84400 valve metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-1 and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 24
19
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
39
Tensile Strength: Ultimate (UTS), MPa 240
230
Tensile Strength: Yield (Proof), MPa 170
110

Thermal Properties

Latent Heat of Fusion, J/g 420
180
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1670
1000
Melting Onset (Solidus), °C 1620
840
Specific Heat Capacity, J/kg-K 540
370
Thermal Conductivity, W/m-K 21
72
Thermal Expansion, µm/m-K 8.7
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
16
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
17

Otherwise Unclassified Properties

Base Metal Price, % relative 37
29
Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 510
46
Embodied Water, L/kg 110
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
36
Resilience: Unit (Modulus of Resilience), kJ/m3 140
58
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 15
7.2
Strength to Weight: Bending, points 19
9.4
Thermal Diffusivity, mm2/s 8.7
22
Thermal Shock Resistance, points 19
8.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
78 to 82
Hydrogen (H), % 0 to 0.0050
0
Iron (Fe), % 0 to 0.080
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.012
0
Oxygen (O), % 0.030 to 0.1
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Titanium (Ti), % 99.773 to 99.97
0
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7