MakeItFrom.com
Menu (ESC)

AWS ERTi-1 vs. N08320 Stainless Steel

AWS ERTi-1 belongs to the titanium alloys classification, while N08320 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-1 and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 24
40
Fatigue Strength, MPa 120
190
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 240
580
Tensile Strength: Yield (Proof), MPa 170
220

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1670
1400
Melting Onset (Solidus), °C 1620
1350
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 8.7
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
28
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 31
4.9
Embodied Energy, MJ/kg 510
69
Embodied Water, L/kg 110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 15
20
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 8.7
3.3
Thermal Shock Resistance, points 19
13

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 0
21 to 23
Hydrogen (H), % 0 to 0.0050
0
Iron (Fe), % 0 to 0.080
40.4 to 50
Manganese (Mn), % 0
0 to 2.5
Nickel (Ni), % 0
25 to 27
Nitrogen (N), % 0 to 0.012
0
Oxygen (O), % 0.030 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 99.773 to 99.97
0