MakeItFrom.com
Menu (ESC)

AZ80A Magnesium vs. 333.0 Aluminum

AZ80A magnesium belongs to the magnesium alloys classification, while 333.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AZ80A magnesium and the bottom bar is 333.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
73
Elongation at Break, % 3.9 to 8.5
1.0 to 2.0
Fatigue Strength, MPa 140 to 170
83 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
28
Shear Strength, MPa 160 to 190
190 to 230
Tensile Strength: Ultimate (UTS), MPa 320 to 340
230 to 280
Tensile Strength: Yield (Proof), MPa 210 to 230
130 to 210

Thermal Properties

Latent Heat of Fusion, J/g 350
520
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
590
Melting Onset (Solidus), °C 490
530
Specific Heat Capacity, J/kg-K 990
880
Thermal Conductivity, W/m-K 77
100 to 140
Thermal Expansion, µm/m-K 26
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
26 to 35
Electrical Conductivity: Equal Weight (Specific), % IACS 59
83 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 1.7
2.8
Embodied Carbon, kg CO2/kg material 23
7.6
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 990
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 24
2.1 to 4.6
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 600
120 to 290
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
49
Strength to Weight: Axial, points 51 to 55
22 to 27
Strength to Weight: Bending, points 60 to 63
29 to 34
Thermal Diffusivity, mm2/s 45
42 to 57
Thermal Shock Resistance, points 19 to 20
11 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.8 to 9.2
81.8 to 89
Copper (Cu), % 0 to 0.050
3.0 to 4.0
Iron (Fe), % 0 to 0.0050
0 to 1.0
Magnesium (Mg), % 89 to 91.9
0.050 to 0.5
Manganese (Mn), % 0.12 to 0.5
0 to 0.5
Nickel (Ni), % 0 to 0.0050
0 to 0.5
Silicon (Si), % 0 to 0.1
8.0 to 10
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0.2 to 0.8
0 to 1.0
Residuals, % 0 to 0.3
0 to 0.5

Comparable Variants