MakeItFrom.com
Menu (ESC)

Annealed AISI 302 vs. Annealed SAE-AISI H12

Both annealed AISI 302 and annealed SAE-AISI H12 are iron alloys. Both are furnished in the annealed condition. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is annealed AISI 302 and the bottom bar is annealed SAE-AISI H12.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 44
21
Fatigue Strength, MPa 210
230
Poisson's Ratio 0.28
0.29
Rockwell B Hardness 81
95
Shear Modulus, GPa 77
75
Shear Strength, MPa 400
440
Tensile Strength: Ultimate (UTS), MPa 580
690
Tensile Strength: Yield (Proof), MPa 230
330

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Melting Completion (Liquidus), °C 1420
1480
Melting Onset (Solidus), °C 1400
1440
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
36
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.0
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.0
2.9
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 140
76

Common Calculations

PREN (Pitting Resistance) 19
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.4
9.8
Thermal Shock Resistance, points 12
22

Alloy Composition

Carbon (C), % 0 to 0.15
0.3 to 0.4
Chromium (Cr), % 17 to 19
4.8 to 5.5
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 67.9 to 75
87.8 to 91.7
Manganese (Mn), % 0 to 2.0
0.2 to 0.5
Molybdenum (Mo), % 0
1.3 to 1.8
Nickel (Ni), % 8.0 to 10
0 to 0.3
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0.8 to 1.2
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 0
1.0 to 1.7
Vanadium (V), % 0
0 to 0.5