MakeItFrom.com
Menu (ESC)

Annealed AISI 410Cb vs. ASTM A387 Grade 12 Class 1

Both annealed AISI 410Cb and ASTM A387 grade 12 class 1 are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is annealed AISI 410Cb and the bottom bar is ASTM A387 grade 12 class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 15
25
Fatigue Strength, MPa 180
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 340
300
Tensile Strength: Ultimate (UTS), MPa 550
470
Tensile Strength: Yield (Proof), MPa 310
260

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 730
430
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
44
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
2.8
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
1.6
Embodied Energy, MJ/kg 29
21
Embodied Water, L/kg 97
51

Common Calculations

PREN (Pitting Resistance) 12
2.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
98
Resilience: Unit (Modulus of Resilience), kJ/m3 240
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 7.3
12
Thermal Shock Resistance, points 20
14

Alloy Composition

Carbon (C), % 0 to 0.18
0.050 to 0.17
Chromium (Cr), % 11 to 13
0.8 to 1.2
Iron (Fe), % 84.5 to 89
97 to 98.2
Manganese (Mn), % 0 to 1.0
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.6
Niobium (Nb), % 0.050 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.15 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.025